11 research outputs found

    Analysis and Design of Network-Based Control Systems with Binary Modulation

    Get PDF
    Network-based control systems have been emerging technologies in control and computer communication fields over the past decade. This paper focuses on the analysis and design of network-based control systems with binary modulation. First, it is shown that different modulations can result in different delays which are inevitable in network-based control systems. The delay can be seen as constant delay when the transmission time is the main consideration. Second, channel noise can result in bit error while bit error is seen as active packet loss in this paper, in this context, the conditions of signal-to-noise ratio (SNR) for binary modulation that can guarantee the stability of systems are obtained according to the proposed algorithm. Third, the system with delay and noisy communication can be modeled as an asynchronous dynamic system (ADS); in addition, the stability is analyzed and controller is designed in terms of Lyapunov function and linear matrix inequality (LMI) scheme. Finally, without loss of generality, numerical simulation demonstrates the effectiveness of the proposed scheme and designed controller based on binary amplitude shift keying (2ASK) modulation

    Classification of epilepsy using computational intelligence techniques

    Get PDF
    AbstractThis paper deals with a real-life application of epilepsy classification, where three phases of absence seizure, namely pre-seizure, seizure and seizure-free, are classified using real clinical data. Artificial neural network (ANN) and support vector machines (SVMs) combined with supervised learning algorithms, and k-means clustering (k-MC) combined with unsupervised techniques are employed to classify the three seizure phases. Different techniques to combine binary SVMs, namely One Vs One (OvO), One Vs All (OvA) and Binary Decision Tree (BDT), are employed for multiclass classification. Comparisons are performed with two traditional classification methods, namely, k-Nearest Neighbour (k-NN) and Naive Bayes classifier. It is concluded that SVM-based classifiers outperform the traditional ones in terms of recognition accuracy and robustness property when the original clinical data is distorted with noise. Furthermore, SVM-based classifier with OvO provides the highest recognition accuracy, whereas ANN-based classifier overtakes by demonstrating maximum accuracy in the presence of noise

    Analysis and Design of Network-Based Control Systems with Binary Modulation

    No full text
    Network-based control systems have been emerging technologies in control and computer communication fields over the past decade. This paper focuses on the analysis and design of network-based control systems with binary modulation. First, it is shown that different modulations can result in different delays which are inevitable in network-based control systems. The delay can be seen as constant delay when the transmission time is the main consideration. Second, channel noise can result in bit error while bit error is seen as active packet loss in this paper, in this context, the conditions of signal-to-noise ratio (SNR) for binary modulation that can guarantee the stability of systems are obtained according to the proposed algorithm. Third, the system with delay and noisy communication can be modeled as an asynchronous dynamic system (ADS); in addition, the stability is analyzed and controller is designed in terms of Lyapunov function and linear matrix inequality (LMI) scheme. Finally, without loss of generality, numerical simulation demonstrates the effectiveness of the proposed scheme and designed controller based on binary amplitude shift keying (2ASK) modulation

    Membership-Function-Dependent Stability Analysis and Control Synthesis of Guaranteed Cost Fuzzy-Model-Based Control Systems

    Get PDF
    10.1007/s40815-016-0162-4International Journal of Fuzzy Systems184537-54
    corecore